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ABSTRACT

Black-Box Discrete Prompt Learning (BDPL) is a prompt-tuning method that op-
timizes discrete prompts without accessing model parameters or gradients, mak-
ing the prompt tuning on a cloud-based Large Language Model (LLM) feasible.
Adapting Federated Learning (FL) to BDPL could further enhance prompt tuning
performance by leveraging data from diverse sources. However, all previous re-
search on federated black-box prompt tuning had neglected the substantial query
cost associated with the cloud-based LLM service. To address this gap, we con-
ducted a theoretical analysis of query efficiency within the context of federated
black-box prompt tuning. Our findings revealed that degrading FedAvg to activate
only one client per round, a strategy we called FedOne, enabled optimal query
efficiency in federated black-box prompt learning. Building on this insight, we
proposed the FedOne framework, a federated black-box discrete prompt learning
method designed to maximize query efficiency when interacting with cloud-based
LLMs. We conducted numerical experiments on various aspects of our frame-
work, demonstrating a significant improvement in query efficiency, which aligns
with our theoretical results.

1 INTRODUCTION

Prompt tuning has emerged as a vital technique for adapting large language models (LLMs) (Liu
et al., 2019} [Brown et al., [2020) to specific tasks without retraining the entire model. Tradition-
ally, many tuning methods require access to the model’s intermediate representations (Brown et al.,
2020; ILi & Liang, 2021} |Liu et al.| 2021} [Lester et al.| |2021), categorizing them as white-box ap-
proaches. However, when such access is unavailable, black-box prompt tuning becomes essential.
This approach focuses on tuning the input prompts without access to the internal processes of the
model (Sun et al.| 2022; Diao et al.,|2022; |Deng et al., |2022; Xiao et al., [2023).

Federated learning (FL) (McMahan et al., 2017} [Li et al.l 2020; 2021; Karimireddy et al.l 2020;
Mishchenko et al.l 2022)) has emerged as a promising approach for leveraging decentralized data
from multiple clients while preserving privacy. Applying federated learning to prompt tuning offers
a valuable opportunity to improve client capabilities and enhance model performance. Most feder-
ated prompt tuning methods to date have focused on white-box scenarios where clients have access
to model parameters (Zhao et al.| 2023} [Zhang et al.,[2023). In those approaches, only the trainable
parameters (prompts) are trained by the client and shared with the server, significantly reducing both
the number of trainable parameters and the communication costs compared to fine-tuning baselines.

However, several practical limitations hinder the applicability of federated prompt tuning that relies
on white-box access. First, white-box prompt learning is not applicable to closed-source LLM that
are accessed via APIs, as these models are not openly shared. In such scenarios, users are restricted
to interacting with the model through the API endpoints without access to the internal structure or
weights of the LLM. This limitation prevents the application of white-box prompt learning tech-
niques. Second, FL is typically applied in scenarios involving thousands of edge devices, each with
limited computational resources. However, white-box prompt learning demands substantial compu-
tational power, as it requires devices to perform computation on the entire LLM. These operations
are computationally intensive, rendering them impractical for edge devices with constrained capa-
bilities. This presents a significant challenge when trying to implement white-box prompt learning
in FL environments, as it can lead to excessive resource demands on the participating devices.
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Figure 1: Query-Efficient Fed-BDPL

In contrast, applying black-box discrete prompt learning to federated learning offers several distinct
benefits (Zhao et al., 2023} |Lin et al.,|2023; Zhang et al.,|2023}; |Che et al.,|2023)), enhancing both the
practicality and effectiveness. First, this approach preserves the privacy of closed-source LLMs by
not requiring access to their internal model weights or architecture. For example, Diao et al.|(2022);
Lin et al.|(2023) introduces a black-box prompt learning method that uses only discrete prompts as
inputs and relies solely on the model’s output loss to train the prompts. Besides, black-box prompt
tuning reduces the computational burden on the client, as it eliminates the need for computation
on the entire model, thereby enabling participation from edge devices with limited computational
resources. Moreover, the communication costs associated with discrete prompts are lower compared
to white-box prompt tuning methods, as the white-box prompt tuning require transmitting large
matrices of numerical values.

Despite these advantages, the application of BDPL in FL still faces two significant unresolved chal-
lenges, tempering its overall promise. First, previous research (Lin et al., 2023; Sun et al., [2023) on
federated black-box prompt tuning has neglected the substantial cost associated with queries to the
LLM cloud service (Figure[I] left). Second, a convergence analysis for Federated BDPL aimed at
optimizing discrete prompts has not yet been provided.

Targeting the above problems, we introduce a novel federated learning framework, FedOne, de-
signed to optimize query efficiency in Federated BDPL. We offer the first convergence analysis of
Fed-BDPL in this context and further extend the analysis of the query efficiency towards the cloud-
based LLM server. The results demonstrate that by limiting activation to a single client per round,
FedOne achieves optimal query efficiency (Figure[I] right). Our approach is particularly well-suited
for scenarios involving limited computational resources, such as mobile devices or IoT systems,
where local training of LLMs is impractical.

Formally, this paper makes the following key contributions:
* We identify that existing federated black-box prompt tuning methods overlook the significant

costs associated with querying cloud-based LLM services.

* To address this gap, we present the first theoretical analysis of Federated BDPL, with a focus on
understanding and evaluating the query efficiency when interacting with cloud-based LLMs.

* Based on our analysis, we introduce the FedOne framework, a novel approach designed to opti-
mize query efficiency in Federated Black-box Prompt Learning by activating only one client per
round when querying cloud-based LL.Ms.

2  METHOD

2.1 FEDERATED BLACK-BOX PROMPT LEARNING FRAMEWORK

In the federated black-box prompt tuning framework, there is one central aggregation server and K
clients. Each client, indexed by k, possesses a dataset DF¥, consisting of input sentences Uk and
their corresponding labels Y%, i.e., D = {WU¥ Y*}. The dataset U* contains a total of M* input
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sentences, each represented as w ie, Uk = {wk } 1 Similarly, the corresponding labels ym
k
comprise Y*,i.e. Y* = {ym}m 1’

Each client generates a discrete sequence of prompt tokens ®F = ¢¥ ... ¢F ... ¢% from a trainable
parameter o € R™*V_ This learnable parameter, a*, is transmitted to the FL aggregation server
for averaging. Details of how to generate the discrete prompt ®* from o and the local training of
a” through interaction with the cloud-based LLM service will be discussed in the next subsection
regarding the local black-box prompt learning on the client.

The server and clients collaboratively solve a minimization problem, aiming to reduce a global loss
function that aggregates the local loss functions from the clients. This can be expressed as:

K e MF
: . A k(&®. ok k k
mqln{ﬁ(@,\ll) —’;ﬁﬁ (@; @ )} L5(2;¢") Z1£ mﬂym (1)

where £(®; U) represents the global objective function of the FL, ¥ = {\I’k}szr LF(-, UF) is the
local objective function of client k. The function £(-, -) denotes the loss function.

2.2 BLACK-BOX DISCRETE PROMPT LEARNING ON THE CLIENT

We now discuss the local training process of the client through interactions with the cloud-based
LLM service. In this section, all variables have the superscript k, indicating that they belong to
the k-th client. However, the reader can ignore this superscript and treat it as a standalone training
process on a single machine.

Generating the discrete prompt sequence ®*  The sequence of the discrete prompt ®F is gen-
erated from a vocabulary V = {V[j]}/L,, which contains a total of N token options. Each to-

ken ¢¥ in the prompt sequence ®F is selected from the vocabulary, i.e., ®¥ = ¢h ... ¢k ... ok =
V[i%] - V[i¥] - - - V[j*]. For the i-th token ¢¥, the prompt index j¥ is sampled from the categorical
distribution pj, i.e., ji ~ Cat(p}). Note that p§ = [p},,...p} y], where the element p} ; represents
the probability that the token ¢ is selected as V'[;] from the vocabulary V.

Directly optimizing the p¥ may cause trouble in the convergence analysis as the gradient of the
categorical distribution is biased. To address this, we re-parameterize the categorical distribution
p? using the Gumbel-Softmax technique (Jang et al., 2016) and introduce the parameter af =
[aﬁ 1 ...aﬁ ~ | as the learnable parameter. The re-parameterization is shown below:

exp <log(a?ﬁ)+gfj)
k
Pij = N log(ak )+g¥ @)
> =1 €XP (%)

where 7 > 0 is the temperature parameter, gl’f ; ~ Gumbel(0, 1) is the Gumbel random variable.
We denote the Gumbel-Softmax function as GS, i.e. p* = GS(a*).

Optimizing the learnable parameter a* To compute the gradient with respect to the learnable

parameter a*, we first define the expected loss over the sequence of prompts in Eq.[3| The i-th token
¢ is generated from the vocabulary by sampling the prompt index from the categorical distribution,
i.e. ¢F = V[j¥], where j¥ ~ Cat(p¥). For brevity, this sampling process is denoted as ¢¥ ~ p¥. We
can define the expectation of the loss for the distribution of the prompt as follows:

Egrpr [L(@F, 0F)] = Y™ o0 D ( L(D*, vk H (¢§)> 3)
¢1 Np ¢k, Npk, =1
Following the same steps in (Diao et al., 2022, Eq. (2)), we can estimate the gradient w.r.t. a by:

va;ﬁE@’“NGS(ak) [‘C((I)ka \Ijk)] = E@’“NGS(C«’“) |:£((I)ka \Ilk)va’f log P(Qf)] “)



Under review as a conference paper at ICLR 2025

The j-th component of V klogP (¢¥) could be explicitly computed as follows (with detailed steps
provided in Appendix @

Vo, log P(8F) = Ve logpl e = ¢ 7t ' 5)

Then, we employ the mini-batch stochastic variance-reduced policy (MB-SVRP) estimator (Diao
et al.| 2022; Williams}, [1992)) to reduce the variance of the sampling when computing the gradient.
This involves sampling the prompt sequence ®* from the distribution p* multiple times, with the
number of samplings denoted by /. The MB-SVRP estimator is then computed as follows:

( (I)kr Bk

where {@’”}i:l are sampled independently from p* = GS(a*). The mini-batch B*, with size
B, is sampled from the dataset ¥*. Note that the clients are unable to directly compute £(®**, B¥)
on their own. They must transmit both the sampled prompt ®* and the mini-batch B* to the cloud-
based LLM service, which then computes the loss £(®**, B¥) and returns the result. Finally, with
the learning rate set to 7, the update of ¥ at the ¢-th iteration is expressed as follows:

I I
Var f* (@, BY) = Z_j X_j @’”B’“)VaflogP(W)] 6)

'\m—‘

ai(t-&-l) = af,(t) -n- @a;cfk(ak, Bf) 7

2.3 ALGORITHM

Algorithm [I] outlines the Fed-BDPL framework, which integrates federated averaging with local
client training with Gumbel-Softmax-BDPL (GS-BDPL). The FL aggregation server randomly se-
lects a subset of clients and broadcasts the trainable parameters to them. Each selected client & then
performs local training on the parameters and return the updated parameters o to the server. The
local training of the selected client is conducted through black-box prompt learning by querying the
cloud-based LLM service, as detailed in Section Finally, the server aggregates the updates by
averaging the parameters from all participating clients. This process is iteratively repeated through-
out the training. Specifically, in the FedOne framework, the number of activated clients is set to
1, as highlighted in the light green box. The reasons behind FedOne’s high query efficiency on
cloud-based LLM services will be formally analyzed in the next section.

Algorithm 1 Fed-BDPL. C denotes the sampling ratio of the clients. K, represents the number of
selected clients, and U is the set of selected clients.

1: Server executes: 13: Client executes:
2: Initialize o 14: function Client_Update(k, a®):
3: fors=0,1,...5—1 do 15: fore=1,..., E do
4 FedAvg: K, + max(C - K, 1) 16:  Re-parameterize the categorical distribution
’ k _ kY uqi
p* = GS(a*) using Eq.[2
S: FedOne: K, « 1 17:  Query the cloud-based LLM server to obtain
6: U < (sampling K, clients) L(®kr BEVLE
7. for k € U, in parallel do (@b, Ae)} N
3 af — o 18:  Compute V. f* (", BY) using Eq.@
9: o” < Client_Update(k, a*) 19: o «—aF —n- Vi fFaF, BF)
10:  end for 20: end for '
1 @ g Yy, @ 21: Return o*
12: end for
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3 CONVERGENCE ANALYSIS

3.1 ASSUMPTIONS

Assumption 1. Unbiasedness and bounded variance of stochastic gradient: We assume that the
stochastic gradient is unbiased and has bounded variance.

Eys, [Var 5@, 05| = Var Fla*, 0) )

Vi Fh(@,0h) ~ By [Var @b, o] < o ©

By,

Assumption|[I]is the basic assumption for solving non-convex optimization problems using stochas-
tic gradient descent (Ghadimi & Lan| 2013} Hazan & Kale| [2014; Xu et al., [2019; [Liu et al.| 2020).

Assumption 2. Bounded loss: At the k-th client, ¥ ¥, € UF, and ®* sampled by p*, we perform
a clipping operation with a constant G for loss function £(- | -):

(%, ¥y <G (10)

Assumption 2] ensures that the loss value is bounded, primarily to regulate the loss during I-sample
estimation in stochastic policy gradient, thereby facilitating theoretical analysis.

Assumption 3. Clients’ heterogeneity by weighted gradient diversity: For clientk = 1, ..., K with
sampling probability vector ¢ = {q[k] }szl, and ¥ o« F*(a®, U*) is local gradient of a; w.r:t. all

input sentence in client k. We assume that X is the upper bound on the weighted gradient diversity
across local objectives, i.e.

A q) & Sy gl Hvai_ch(a’“,\Ifk)HQ ) )

K k) S
>kt @M - Vo FF (o, UF)

Assumption 3] introduces gradient diversity as a measure of client heterogeneity, which is used to
quantify differences among clients and establish convergence conditioned in heterogeneous FL set-
tings (Yin et al., 2018; Haddadpour & Mahdavi, [2019)).

3.2 THE CONVERGENCE OF FEDERATED BLACK-BOX DISCRETE PROMPT LEARNING

Theorem 1. Suppose assumption and Blhold, using algorithm[I|to solve the FedBDPL problem
defined in Eq.|l| Let B = min s BK} where B represents the local mini-batch size for
each client. Set o; j; > v > 0. The variance of the variance-reduced policy gradient is given by

o2 = %. Egrgs(a*) [ﬁ(@k, \I/k)] is L-smooth w.r.t. a® where L = mivzi(lf;l) If the learning

rate n satisfies the following condition:

AL+ \/A2L2 +8L2F (1+ &)

0<n<n = (12)
812 (1+ 4 )
Then, the Fed-BDPL'’s expected gradient, Vo F (0, pk ), can be bounded as follows:
T-1 2,2 2 1 2
1 w2 4G 2(E+ 1) LPnPnod (1 + ) + 2nlno,
TZHVQF(QM\I] )H Sﬁ"‘ B
t=0
2(E +1)L*n*no%(1 + 7=) + 2nLno?
+ B * (13)

Remark 1. The local gradient of BDPL is unbiased within each client, but due to data heterogene-
ity across clients, it becomes biased with respect to the global gradient (Haddadpour & Mahdavi,
2019). This bias can be mitigated by reducing the step size 7. However, as the gradient diversity, A,
increases, an even smaller step size 7 is needed, which in turn slows down the convergence process.
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Corollary 1. Convergence rate and complexity

1) Convergence rate: Let 1 = min {77 } Under this condition, the following holds:

) \/*7 T
T—
LS Va0 = o) (14)
= VT
2) Complexity: To guarantee an e-solution, such that T Z ’V F(ay, \Ilk)||2 < €2, the follow-
ing condition must hold:
1
T.=0 <4> (15)
€

Fed-BDPL achieves a sub-linear convergence rate of (ﬁ) and a complexity O (Z), which is

comparable to that of classical non-convex smooth SGD algorithms (Allen-Zhu, 2018; [Khaled &
Richtarikl 2020; Gower et al., [2021)).

Corollary 2. The impact of K, (FedOne): In the FL framework, T, K, represents the total number
of queries made to the cloud-based LLM service to achieve an e-solution, whose quantity is directly
proportional to the cost incurred for utilizing the LLM. The following condition holds:

T.K, < K, (16)

Therefore, T. K, is a function of K, that increase steadily for K, = 1,2, ..., K, indicating that
the optimal K, for query efficiency is K, = 1.

4 EXPERIMENT

The objective of the experiment was to assess the performance of Fed-BDPL, along with various
aspects of the framework, and to explore the query efficiency advantages of FedOne. The code for
this project will be made open source.

4.1 EXPERIMENT SETUP

For our experiment, we utilized the GLUE benchmark (Wang et al., 2018), which includes a wide
range of tasks including MNLI (Williams et al.l[2018), QQP (Iyer et al.L|2017), SST-2 (Socher et al.,
2013)), MRPC (Dolan & Brockett, [2005), CoLA (Warstadt et al., [2019), QNLI (Wang et al.,|2018),
and RTE (Dagan et al., 2005; Haim et al., |2006; |Giampiccolo et al.,[2007; |Bentivogli et al., [2009).

In the baseline experiment within the federated learning framework, we employed 100 clients. In the
FedOne framework, there was only one client activated per round for training and aggregation. We
adopted the k-shot framework from [Perez et al.| (2021)), adapting it to a federated learning context.
Each client received a k-shot dataset comprising k£ samples per class.

The model architecture employed is RoBERTa-large (Liu et al.,[2019). The trainable prompts were
placed at different positions in the model depending on the algorithm of the baselines. For the
training procedure, we conducted a hyperparameter tuning phase using a grid search approach to
explore learning rates of [3e—4, le—4, 3e—5, le—5]. The batch size was set at 32, the prompt length
was set at 20, and the optimization algorithm employed was AdamW (Loshchilov & Hutter, [2017)).
Further details about the dataset and evaluation metrics of them are available in Appendix [B.I}

4.2 BASELINES

We evaluated several approaches categorized as standalone and federated learning models. The stan-
dalone model baseline includes Manual Prompt Tuning, In-Context Learning (Brown et al., |2020),
and Fine-tuning (Diao et al.| 2022| Table 7)). In the domain of Federated Prompt Tuning for white-
box scenarios, we adapted two established white-box prompt tuning methods to Federated Learning.
Specifically, we implemented prompt-tuning (Lester et al., [2021) and prefix-tuning v2 (Liu et al.,
2021)) across distributed clients. In the prompt tuning approach, a prompt was integrated into the
embedding layer of the model for each client. Each client then undertook local training solely on
their respective prompt. In prefix-tuning v2, the prompt was utilized across all embedding layers
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Table 1: The overall performance on the RoOBERTa-large. Each trial runs across three random seeds.

Dataset MNLI QQP SST-2 MRPC CoLA QNLI RTE Avg.
Manual Prompt 35.91.3 49.8()‘9 77.21_1 70~41.6 0.60'0 49.21'1 48.20'6 47.33
In Context Learning 37216 50.1g9 82.80,7 72.153 1.1p4 50.8p5 49.323 49.06
FineTuning 50.81.2 60.819 86.52.0 78.41,3 20.41.9 53-218 55.62_3 57.96

FedOne-PromptTuning 41.50'9 66.40_2 77.92'1 79.50'5 0.81'1 49.61,0 53~10.6 52.69
FedOne-P-Tuning v2 42.70.7 66.70‘1 82.90_3 80.60'1 1.01'0 52.40,2 56.40,4 54.67

FedOne-BBT 41.99.4 66.392 76.816 80.6p3 2513 BHllpgs 55310 53.50
FedOne-BDPL 41.01_2 66.70'1 80.86.0 81.10'1 5.22_4 51.71.4 57.11.9 54.80
FedOne-GS-BDPL 41.10.4 66.90‘2 80.80_4 81.00'1 5.31'1 52~10.8 57.11,1 54.90

of the model, providing more trainable parameters and enhancing the capability to adapt to down-
stream tasks. In the federated prompt tuning for the black-box scenario, we adapted the Black-Box
Tuning (BBT) (Sun et al.l 2022) to FedOne, incorporating projection from a low-dimensional vec-
tor and the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) into federated black-box
prompt learning. Each client held a distinct low-dimensional vector, while the projection matrix A
was shared among all clients. For every client, the population size of CMA-ES is set to 20, and the
dimension of the low-dimensional vector is set to 500, as recommended by |Sun et al.|(2022)). Finally,
we adapted the BDPL (Diao et al.,2022) and Gumbel-Softmax BDPL (GS-BDPL) to the Federated
Learning, employing policy gradient methods and Gumbel-Softmax as outlined in Algorithm [I]

4.3 RESULT

Test accuracy The performance results were summarized in Table [l We observed significant
variations in the effectiveness of different learning approaches when applied to the RoBERTa-large
model across various NLP tasks. Traditional fine-tuning methods outperformed both Manual Prompt
and In-Context Learning techniques, achieving the highest average score of 57.96 across all datasets.
This result underscores the effectiveness of complete model retraining over other methods that in-
volve fewer parameter updates or rely solely on contextual adjustments. Although Manual Prompt
performed well on some datasets, its performance lacks stability. White-box federated prompt tun-
ing methods demonstrate improvements over Manual Prompt and In Context Learning techniques.
Generally, the black-box method (BDPL and GS-BDPL) exhibits performance that is comparable
to, or slightly better than, the white-box tuning method (PromptTuning and P-Tuning v2).

Computational efficiency and resource utilization Table 2] presents the performance metrics for
various federated prompt tuning methods per client, focusing on the computational and communica-
tion efficiencies of these methods. We measured the computation time required for model training.
Notably, in the white-box method, training occurs on the client side. We only measure the time for
forward and backward propagation of the local model, along with the time for parameter updates.
In the black-box prompt learning method, the computation time for model training includes both the
execution of the black-box algorithm and the wait time for responses from the cloud-based LLM
services. The results are presented in the first column of Table 2] We observed that the white-box
method is considerably faster; however, it relies on the assumption that clients possess sufficient
computational power, such as GPUs, which may not be practical in FL environments. Within the
black-box approach, BDPL requires less computation time for training compared to BBT.

The advantage of black-box prompt learning lies primarily in its reduced communication costs and
the efficiency of the trainable parameter size, as well as in avoiding the need to store and train the
entire LLM on the client. As illustrated in the table, the federated black-box prompt tuning method
features a significantly smaller parameter size and eliminates the GPU requirement on the client.
This allows devices with limited computational resources, such as edge devices, to participate in the
federated prompt learning process.

4.4 CASE STUDY

Query efficiency and the number of activated clients We began by illustrating the relation-
ship between query efficiency and the number of activated clients (/) using a toy example on the
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Table 2: Evaluation of computational efficiency and resource utilization

FL Server Client Trainable

Baseline Comp. Time Comm. Cost FL Server LLM Server Parameter Size Client Loaded

for Training (s) (MB) : # Queries  # Query (MB) GPU Memory (MB)
FedOne-PromptTuning  77.6 15.63 100 - 7.8x1072 3564 (Model, Grad., Prompt)
FedOne-P-Tuning v2 91.1 1141.72 100 - 5.7 3656 (Model, Grad., Prompt)
FedOne-BBT 20474.6 0.38 100 2x10% 1.9x1073 1.90x10~3 (Prompt)
FedOne-BDPL 1614.3 3.05 100 2x10° 1.5x1072 1.52x10~2 (Prompt)
FedOne-GS-BDPL 1624.4 3.05 100 2x103 1.5x1072 1.52x10~2 (Prompt)

MNIST dataset (LeCun et al., 2010), as shown in Figure We then evaluated the impact of K, on
query efficiency in Federated Black-box Prompt Tuning, as presented in Table[3]

In the first experiment, the MNIST dataset is split across 100 clients, with each client initially pos-
sessing an equal subset of the training data. We experiment with 2 epochs with a learning rate of
0.01 and a batch size of 32. We explore five configurations by varying the number of active clients
per epoch: 1, 5, 10, 20, and 40 clients (denoted as K,=1, K,=5, K,=10, K,=20, and K,=40 re-
spectively). The model for each client is a Multilayer Perceptron (MLP). It includes a flattening
input layer, a fully connected layer with 512 neurons and ReL.U activation, a dropout layer with 0.2
dropout rate to prevent overfitting and a final fully connected layer that outputs to 10 classes via
a Softmax function. As illustrated in Figure |2} utilizing the minimum number of activated clients
(FedOne) enables the FL framework to achieve optimal query efficiency for convergence. Although
Li et al.|[(2019) have demonstrated that an increased number of clients participating in the training
and aggregation process accelerates convergence in federated learning, in the context of Federated
Black-box prompt tuning, the number of queries to the LLM server increases linearly with the num-
ber of participating clients. This rise in query numbers outpaces the benefits gained from faster
convergence due to increased client participation.

100

90 Table 3: Query Efficiency in Federated Black-Box Prompt
3 80 Learning
g 0]
s . AC Fed-BDPL Fed-BBT
§ N g #Epoch  #LLM Queries #Epoch # LLM Queries
- 0 _ EIZE I 2544192  528.61332.4 10.844.4  2350.01870.3
30 CI\ 10'00 20'00 30'00 10 11-5i6.8 2430~8i1378.8 4-2i1.8 10444~4i3624.3
# Model Query 30 3.512s 2672.7116254  1.7+09  16000.0+5656.9

Figure 2: Toy Example Demon-
strate on Query Efficiency

In the second experiment investigating query efficiency within the federated black-box prompt learn-
ing scenario, we utilized the SST2 dataset to explore how varying the number of activated clients per
round affects model convergence efficiency in FL environments. We tested the number of activated
clients per round within the range of [1, 3, 10, 30]. For each configuration, we monitored the number
of queries required to achieve target accuracy on the validation dataset. Specifically, we evaluated
the prompt at the end of each epoch and stop training once the target accuracy was reached, report-
ing the number of LLM queries at that point. To ensure reliability and account for variability in
the learning process, each experimental setup was replicated 20 times, and outliers in the number of
queries were removed. The primary aim of our study was to explore how the number of activated
clients affects the speed and efficiency of model convergence in FL, specifically to demonstrate the
query efficiency of the FedOne approach.

The results presented in Table [3| demonstrate a clear trend where fewer activated clients are asso-
ciated with greater query efficiency. This relationship is evidenced by a consistent decrease in the
number of cloud-based LLM queries as the number of activated clients is reduced, a pattern observed
across both the Fed-BDPL and Fed-BBT.
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Table 4: Federated discrete black-box prompt learning on GPT-3.5 Turbo

MNLI QQP SST-2 MRPC CoLA QNLI RTE Avg.
No Prompt 14.05(._00 68‘04()‘00 91.350_00 79.62()‘00 36.010_00 56.22()‘0() 72.200‘00 59.64
Prompt w/o. Training 9.171,31 62.944,94 79.472_71 79.881,94 25.531_10 56.694,76 72.162_51 54.41
FedOne-BDPL 13.670.17 68.253‘05 87.773.82 81.690(70 32.166,51 70‘58135 77.621,62 61.67

FedOne-GS-BDPL 16.001_78 69.922_85 92.582_71 82.930_67 36.202_95 72-051.6/1 80.332_32 64.28

Real-world implementation on GPT-3.5 Turbo We implemented the Fed-BDPL framework us-
ing GPT-3.5 Turbo, a widely recognized and powerful closed-source language model. We leveraged
the OpenAl API (OpenAl, [2024) to enable individual clients to conduct local training. In this im-
plementation of the federated black-box prompt learning, clients sent prompts and input sentences
to GPT-3.5, which returns the logarithm of the token probabilities at each position. A key challenge
was that OpenAl API only provides probabilities for the top 20 tokens for each position. Conse-
quently, we needed to transform the predictions on these tokens into the categorical prediction of the
input sentence, instead of using straightforward model output as we did in the ROBERTa experiment.
To solve this problem, we appended a template question at the end of the input sentence to query
the target label token. For example, in the QQP task, we added the phrase “equivalent? yes or no”
to the end of the input sentence. This allowed us to retrieve the top probabilities for all class label
tokens (“yes”, “no”) in the top 20 probability. and use the probability of the target token as the logit
output, for the following procedure.

The results were presented in table [] indicating that GPT-3.5 Turbo achieves a certain level of
performance without any prompts. When adding a random prompt without training, the model’s
performance dropped. After tuning the prompts, performance improved significantly, surpassing the
performance without a prompt. Furthermore, the table demonstrated that the GS-BDPL method con-
sistently outperforms other black-box approaches. To summary, this method can be used to perform
prompt tuning on federated learning with extremely low computational resource requirements.

5 RELATED WORKS

5.1 WHITE-BOX AND BLACK-BOX PROMPT TUNING

Prompt tuning is a technique for adapting LLM to downstream tasks. It tailors the model’s responses
to specific tasks or styles without requiring the retraining of the entire model. In white-box prompt
tuning, the learner is granted full access to the LLM, allowing them to modify and access inter-
mediate results of the model and acquire the gradient. [Li & Liang| (2021) and |[Lester et al.| (2021}
proposed a lightweight and modular alternative to full model fine-tuning for natural language gen-
eration tasks, which optimizes a sequence of continuous soft prompts, prepend in the embedding
layers of the LLM. |[Liu et al|(2021) propose the P-tuning v2. Instead of only applying the prompt
in the input layer in|Li & Liang (2021), they adapt trainable parameters on all layers’ inputs, which
can effectively match the performance of fine-tuning across a wide range of models.

In situations where the learner cannot access the intermediate result of the LLM model, the learner
has to use a black-box prompt tuning method. In the black-box prompt tuning, the learner can only
query the output of the LLM with the input of the model. Most of the research assumes the input
is at the soft prompt layer of the LLM (Sun et al.| [2022; |Chen et al.| 2023). Others research use the
discrete prompt which is concrete with the input text, which is more portable, and is usable for any
cloud-based LLM API (Diao et al.2022). Xiao et al.| (2023)) presents a privacy-preserving, efficient
transfer learning method that adapts large foundation models to specific tasks. This method does
not require access to the full model or compromise data privacy. It utilizes a lightweight adapter
and a compressed emulator for model tuning. |Chen et al.| (2023) introduces an efficient method
for optimizing instructions for black-box LLMs using Bayesian optimization of soft prompts. This
approach significantly improves LLM performance across a variety of tasks without requiring direct
access to the model’s internals. |Deng et al.|(2022) proposes an efficient method to optimize discrete
text prompts using reinforcement learning, demonstrating superior performance compared to other
prompt optimization techniques across a variety of tasks. [Sun et al.| (2022) proposed black-box tun-
ing (BBT), a method that optimizes continuous prompts by optimizing a lower-dimensional vector
and projecting them to the prompt searching space. They use the Covariance Matrix Adaptation
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Evolution Strategy (CMA-ES) for optimizing the vector. Diao et al.|(2022) introduced BDPL which
optimizes the discrete prompt with the policy gradient method.

The black-box prompt tuning method is versatile and applicable to various tasks and models without
model-specific modifications. However, its major drawback is computational inefficiency, requiring
multiple forward passes through the model, which leads to high costs and extended training times.
Additionally, the convergence of the derivation-free optimization method is often slow.

5.2 FEDERATED LEARNING

Federated learning (McMahan et al.|, |2017; Karimireddy et al., [2020; [Li et al., 2020; [2021; Marfoq
et al.,2022; Mishchenko et al., [2022)), first introduced by McMahan et al.|(2017)), is a paradigm that
enables devices to collaboratively train a shared predictive model by locally aggregating updates. In
this framework, each client maintains a copy of the model for local training, and the server selects
a subset of clients in each round for aggregation. Since the introduction of FedAvg, it has lacked
formal theoretical convergence guarantees. As a result, researchers have made significant efforts to
establish and demonstrate its convergence (Zhou & Cong| 2017} Stichl 2018).

Partial client activation is a key area of research in FL and has gained significant attention due to
its impact on improving convergence rates and system efficiency. |Stich| (2018)) shows that in the
convex case, increasing the number of activated clients significantly improves convergence rates in
Federated Learning with independent and identically distributed (IID) data, achieving a linear speed-
up. [Li et al.|(2019) extended the understanding of federated learning by analyzing the convergence
of the FedAvg algorithm, under the convex case. They demonstrate that under the non-IID setting,
the convergence rate has a weak dependence on the number of activated clients, which implies that
the FedAvg is not able to achieve linear speedup under this case, therefore the participation ratio can
be set smaller to alleviate the straggler effect without affecting the convergence rate.

5.3 FEDERATED PROMPT TUNING

Applying federated learning to prompt tuning can enhance the model by incorporating additional
data. This approach leverages distributed datasets to improve model performance while adhering
to data privacy. To apply white-box prompt tuning in FL, each client maintains the entire model
but trains only the prompt parameters. These parameters are then shared and aggregated across
clients (Zhao et al.l 2023} [Zhang et al.| 2023} (Che et al., [2023). However, this method assumes
white-box access to LLM, which is impractical for closed-source LLMs. Consequently, black-box
prompt learning has been adapted for FL to address these limitations (Lin et al., 2023} |Sun et al.|
2023). [Lin et al.| (2023), applied the black-box prompt tuning method Diao et al.| (2022)) to the
Federated Learning, where the client can train the probability matrix for the discrete prompt via
querying the cloud-based LLM API. Sun et al.| (2023) applied the BBT to FL. In this approach,
clients train only low-dimensional vectors using CMA-ES via querying the cloud-based LLM API.

For federated prompt tuning, most existing research has focused on conventional issues in FL, such
as data heterogeneity (Zhao et al.l |2023)), privacy (Zhang et al., [2023)), security (Zhao et al., |2023)),
and client computation-communication efficiency (Lin et al.| 2023} |Sun et al., 2023). However,
no studies have yet addressed the query efficiency of Federated Black-box Prompt Tuning, a novel
challenge introduced by the deployment of Black-box Prompt Tuning through cloud-based APIs.

6 CONCLUSION

We identified that previous research on federated black-box prompt tuning had overlooked the sig-
nificant query costs associated with cloud-based LLM services. To address this issue, we conducted
a theoretical analysis of query efficiency in the context of federated black-box prompt tuning, re-
vealing the relationship between query efficiency and the number of activated clients. Based on
our findings, we propose the FedOne framework, which achieves optimal query efficiency with re-
spect to the number of activated clients. We performed numerical experiments on various aspects of
FedOne, further validating its performance through real-world experiments on GPT-3.5.
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A CONVERGENCE ANALYSIS

A.1 NOTATION AND OMITTED MATHEMATICAL STEPS

t=0,...7—-1 Number of global iterations
e=1,..,F Number of local iterations
§=0,..,5 Number of client-server interactions
(-1l The default 2-norm in this paper
Cat(-) Categorical distribution function
i ~ Di Abbreviation for j; ~ Cat(p;)
DF Dataset for client k
U = {%}Kl Input sentence
Yk = {y’;n}i\::l The category corresponding to the input sentence
The number of all clients
q= {q[k] }le Probability of each client being selected
K, The number of selected clients.
U The set of selected clients.
ab = {af }:L:l Gumbel-Softmax parameters for k-th client
==Y ey, @ Average of @”
OF = b ... ok Prompt
1% Vocabulary list of total NV tokens choice
pF=1[pF,,--,pfy] The probability distribution over the N token indexes.
Vi F oD The local full gradient of the client & lb
Vat f k() The local stochastic mini-batch gradient of the client &
@a@ fEC) The local stochastic mini-batch variance-reduced policy gradient of the client k @
Va;_; F*(-,") The average full gradient of the client group U,
Vaz_c () The average stochastic mini-batch gradient of the client group U,
@a;ﬂ (¢, The average stochastic mini-batch variance-reduced policy gradient of the client group U,
VarF(a", ) The average full gradient of all K clients for {a* }szl
Vo, F(a,-) The average full gradient of all K clients for o

Table 5: Notation Table

For i = 1, ..., n, we define the stochastic gradient, stochastic mini-batch gradient and full gradient
with respect to a¥ as following:

.\ def
Var (@, ¢7) = VarEerasiar) [L(O, 47,)] (17
def 1
Var ['(e",BY) = Var i > Earcasan) [£(@F,47,)] (18)
¥ cB*
def 1
Var FH (0" 0%) = Vor o D7 Earccsas) [C(2F,47,)] (19)
Y €Tk
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A.2 THE OMITTED DERIVATIVE PROCESS FOR EQ.
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According to the derivation rule of the Softmax function,
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;. _ 1 . (1 —pk ) = & 1)
80/6’ ¥ Tak f‘pk,ﬁ o “Js Taij
when j # jk:
opF . 1 .y
i k k p;,
,J ’i,]p Ta?,j

A.3 LEMMAS

The following lemma shows that the unbiasedness and bounded variance of variance-reduced policy
gradient. This is important for bounding the randomness introduced by prompt sampling.

Lemma 1. Unbiasedness and bounded variance of variance-reduced policy gradient: At the k-th
client, V ¥ € Wk r = 1,... I denotes the r-th sampling of ®* from p* w.r.t. {@’”}izl ~ p*,
F=GS(ak), a;; >v>0fori=1,...,nandj=1,..,N, T > 0is the temperature parameter,

2
and 02 = SSVQ[ , then the variance-reduced policy gradient is unbiased and bounded by :

Eononcs@iyt, | Vet @ )] = Vars* @, vh) (23)

o2
E{gr.rcsar)y {HV kfk P — E{gorracsar)yi_, { f o* k) ”‘ } Ta (24)

Proof. We abbreviate Egr.rgs(ar)yz_, as Ergrryr
1) The unbiasedness of variance-reduced policy gradient:

]E{<I>’€v"'NGS(oxk)}f:1 [ﬁaf‘fk(aka ¢7kn)}

I I
1 1 .
= Eggrryr_, {1—1 > (ﬁ(@“,w’“ -7 > L@k yh) ) Vi log P(¢l )1 }
r=1

Z L@, 05,) | Var log P(#;7)
w=1

wFETr

'\c\b—*

I
1 T=1 pghr.
= E{i”“'}izl T—-1 Z T S L(e%
=1

<



Under review as a conference paper at ICLR 2025

I
= Efprryr, Ll, > (L@ k) - Vap log P(af”))]

I
1 1 r
“Blaeny, {722 > L@ k) | oo P
w=1

wEr

I I
1 1 ’
X S Eae(@, k) | Ear Vo los (L)
r=1 w=1
wET

1< 1 ! .
-7 2_; 1 > Eaw [£@8,08)] | Bar [Var log P(6}7)]
r= w =
wET
=V fk(ak wk: ) 1 i Z E@ (I)k w wk )] E <valfp(¢fvr)>
= Vak y¥Wm) T 7T w ) e | T e
: I ot P(¢f")
wFET
SR | Vi P(677) .
_ ik ok L kw .k ) : i ) k,r
= Vaff (a 7’(/)m> I z:; T_1 Z Equw CI) ’wm)] kZ ( P(¢k7r) P(¢z ))
r w=1 @7 " ~pk ¢
wEr
1< 1 ,
= Var fHab k) - 230 | Z Egu [C@ 5] |+ > (VarPl6F"))
r=1 w=1 oF T ~pk
wFET

I
2) 1 1 w r
= VarfMeb ) =73 | 75 S B [0, 08 -va;«( >, Plor >)
;7" ~p}

w=1

wEr

I I
1 1
DV @) -3 gy X Bee (L@ 0R)] | Var (1)
w=1

wET

16



Under review as a conference paper at ICLR 2025

= vaffk(akv¢fn)

where (1) uses independence of each sampling for ®*; (2) is because n is not infinite and the GS
function is continuous and derivable with respect to a;; (3) uses the property that the elements of
probability vector sum to 1.
2) The bounded variance of variance-reduced policy gradient:
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and the independence of each sampling for <I>’“ (2) uses inequality E ||a — Eal|®> < E ||a||; (3) uses
Assumptlonl; (4) uses a ">v>0and (5

_ ke k,r 2 N
Vi log P(¢;") < N~max{ f";? |- p“,j,. } <\ =
‘ Toy Toy; TV
5) is because when I > 2:
1 < 2
I(I-1) - 1?2

O

The following lemma shows that the Eqr gs(a*) [ﬁ(@k , \Ilk)] is L-smooth for ae. This is crucial for
the later convergence analysis of BDPL and Fed-BDPL and is a necessity for convergence proofs.

Lemma 2. L-smooth for o*: At the k-th client, the ®F is sampled from probability matrix p*, and
p" =GS(ak), a; ;> v >0fori=1,...,nand j =1,..,N, 7 > 0 is the temperature parameter,

Egkwgs(at) [L(®F, WF)] is L-smooth for a* and L = %ﬁ;ﬂ) and then for t-th iteration, the
following inequality is satisfied:

ok, ~GS(ak, ) [L(®F11, U%)] — Egpgsiar) [L(PF, UF)]

L 2
< <Vaqu>§~Gs(af) [E((I)f, ‘I’k)] afiy — af> + b} Hafﬂ - af”
Proof. The objective function:

Egr~cs(ar) [ﬁ(q)kv‘pk)]: Z Z (L(@k’q/k)np(d)f))

df~GS(af)  df~GS(ak) i=1

We can compute the Hessian of the objective function, Vi',i” € 1,--- ;nand j/,5” € 1,--- | N:
Ifi' # i

32

8ai’ ,j/ aai” ,j”

= > Y ( L(B*, T 6&,,]/8041// - };[P (¢) )

h~pk  Ph~pk

¢11€Nplf ¢ il 1 p 11 ¢ i 41 P i 41 (bi-c//,l"/p?//,l ¢?//+1Np,l://+1 (2551"/11}72

0? -
> 2 (‘3@’“Wk)aai,,,aai,,,j,,[{PW‘“))

k k k k
¢'i’ Npi/ ¢i" Npi//

k k k k k k k k k k k k
¢1 ~py ¢i’—1~pi’—1 ¢i/+1Npi/+1 ¢i"—1~pi”—1 ¢i”+1~pi”+1 ¢n~pn

Egr~asar) [L(PF, ‘I’k)]

£(q)k7\1}k) [ (¢k) (z”)] ﬁ P(¢k)

aal,dlaal”vj// i
1=1

i
i#i//

18
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Then:
1_pl§/ / 1—171?// 1
il §! iGN e gy 1
e st if j = j; and 3" = j;
i35 i35
1—pk/ -1 k
i35 N pi”,j” el - 11
Ph)P(eh)] _ ) 7an,\Tran, ) 1T = iand ST
% _ ’l/,ji i’ (25)
8%’,]’3%”73” Py 1Py if j' # jl and j" = j!'
To‘?/ﬁj/ Tak i J// ’ J ] j —Ji
k
Pir 4 p //_ 11 ) ) T 7
——R = if " and 4
TOL?/ ’ < TOL?,/‘J»N > ’ ] 7& ]Z j # jl

Based on aﬁj >v>0:

(26)

2

O [P(¢})P <k>]’< 1

Oay jOayr jur |~ T2V

Further, based on Assumption Q
e

k gk
W]E¢kNGS(ak) [E(CI) U )]‘

SZ Z Z Z Z Z L(DF, uk) H P(¢")

d”f"‘plf ¢i"/—1~p;“/—1 ¢f/+1pr/+1 ¢i»c//_1~p?//_1 ¢§/,+1~p§,,+1 ¢£€1Npl7§ Z =1
i
7: # Z'/I
< G
— 7'21/2
Ifd =4
32

By ot (L2500

62
SRR S S ) Lo I

4)’16’\'1’)1“ k _1 p i1 ¢3'/+1Np§/+1 (z)’);LNp,!cL
i ;é 7

Similar to the analysis in case 7’ # "/, we can get:

9” [P(¢%)] (r+1) _7+1
— L 2vAl < — AR A
aai/,j’aai’,j” = max {p’ 1 p} - 7212

(r+1)G

27

82
| 2

o o, Ear N [L(@F TR | <
aai’,jlaai/,ju q)kNGS(ak)[ ( ’ )]‘ =~

7212

Finally, with H (a) denoting the Hessian matrix of Eqr s (a*) [L(®F, TF)], we can get:

2 2
el < @) =t - 9 () s (5100 < nONE )

7212 7212
(28)
According to Lemma 1.2.2 in (Nesterov et al.l 2018), Egr gs(ar) [£(®, ¥¥)] is L-smooth for a*
_ nGN(1+1)
and L = Yz, O

19
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Lemma 3. Convergence of BDPL: Suppose Assumption [I| and [2] hold, for t = 0,....,T — 1,

a;; > v > 0fori = 1,...,nand j = 1,...N, 7 > 0 is the temperature parameter,
Egrgsar) [L’(@k \Ilk)} is L-smooth for o and L = % O'i is the variance of the stochas—
tic gradient, 02 = SG N is the variance of the variance-reduced policy gradient. Let 1 < 1, then

the BDPL’s full gmdzent VE*(alF, UF) satisfies the following inequality:
=

= [Var FH @k, 09)|* <

t=0

4G 2nnLai N 2nmLo?

2
S = (29)

Proof. According to Lemma 2}
Eqr Py, ~GS(afy ;) ['C((I)?Jrl’\pk)} _E‘I’fNGS(af) [£(®§7wk)]

L 2

< <Vaqu>k~Gs(ak) [‘C(q)?a ‘I’k)] at+1 af> + 5 Haiﬁﬂ _afu
k k = ki k rk L772 = kik k|
<Z (Vap FH (@b, 05), =0 Vop M@k, BE)) + - || Var (0 B0

Both sides take expectations for Egr Gsa,)}z_, and Ep, at the same time, we abbreviate
Efar~as@yr_, 3 Egaryr_,

Egryr_ Es, {E<1>k 1 ~GS(ak, ;) [L(q)f+17\1;k)] — Egrcsal) [ﬁ(q;f,q;k)]}

t+

n ) L 2 . 9
<Egryr_ Ep, {Z [(va;eF’“(ai% vk, —n- vagsf’%af,Bf)} + 7” HVag,ef’“(af,Bf) ] }

=1

n
~ L?’]2 ~ 2
= Efay:_ Es, Kvaa;F’“(af,\v’m =0 Vo [0k BE)) + S |V £k B0 }

i=1

a)
For a):

R Ln? |- 2
Egoryy_, B, KvaﬁF’f(a? UF), = Ve @f, BE)) + - |[Vas s @k, BY)| ]
= (Vo F*(af, U¥),—n-E Es, |Var " (o), B In'g Es, |[Var/*(ab, 89|
= ak (o, V%), —n {oryi_, LB, a,’;f (af,By)| ) + o {eryl_ BB a,’;f (o, BY)
1) -
= <va$Fk(af7\IJk)a_n'EBtE{Q"'}izl {vaifk(afagf):l>
o [ Es, [V (b, BY)| || + Vi Vo (0, BY
+ 5 {oryi_, LB, a’."f (af, BY) + Varg, (oryr_, ag.cf (af, BY)
2 - (Var Fi(af, ),V ka(at,\pk)>+—Hv F’“(at,\Ilk)H
Ln? - , . . 2
+ TE{@T}TIN:lEBt |:Hvaffk(a§78é€) _E{@’T}izl]EBt I:vaffk(af’lgf)} H :|
3) [ Ln? 2
(M) et
~ N 2
+ Ln® -Egry_ Ep, {Hvaff’“(a,’f,l?f) —Eg, [Va;sfk(afﬁf)”‘ ]
~ N 2
+ Ln? - Ep,Bigryr_ {HE& {Va;vfk(af,lgf)} —Egryr_ Eg, [Vaffk(afvlgf)} H ]
L 2 2 ~
— (1) [T @b 12 gy Vars, [T 0 50

+ L772 . Estvar{qﬂ}{:l []EBf { kf (at ) )”
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@ (Lnp? k N 2 T 2 & ek k gk
< (55 =) |[Var FH @b 09|+ Ln? - % 4 Lo B Vargarys_ | [Va, /(e 09)]
2
- 2 B I?
where (1) uses the independence between ¥ sampling and ® sampling; (2) use the unbiasedness of
stochastic gradlent and vanance reduced policy gradient in Assumption [I|and Lemmal[I} (3) use the
inequality [la + b||*> < 2|lall* + 2|6/ (4) and (5) use the bounded variance of stochastic gradient

and variance-reduced policy gradient in Assumption[I]and Lemmal[T]
Then:

) [ Ln? 2 o
< <77n) |V PG, 08) |+ - S L? - %

E¢>t+1~GS(afﬂ) [L(‘I)f-ua ‘I’k)] - E@fNGs(af) ['C(‘I’fa ‘I’k)]

AN Ly Hv L F* (o \If’f)HQJan2 +L77 %
= gt 2 % to B [2

We combine the gradient of a; for each prompt token:

~GS(ar41) [E(@?HAI/’“)] —]E<1>§~Gs(a};) [5(@7’;’\1/’“)]
2

L 2 o 2
< (;7 - 77) |V P (@, 09| - = 4+ 0L - 75

Egr
(I>t+1

k

where a* = (a’f, cak ook,
, the

We let n g n both sides accumulate with respecttot = 0,1,--- ,7 — 1 and divide by 7"
-1

( ) |V FF (e, w0

H

1% . nln?cl  nLn?c?
< T Z [E<I>§~Gs(af) [E(q)f’\ljk)] E<I>§+1~Gs(a§+l) [ﬁ(‘bfﬂa‘l’k)ﬂ + Iz Y+ 72
Then,
1 2
7 D [Var F¥ (e, w5
t=0
< E@ngS(ag) [/3(‘1’]57‘1’]6)} _Eé’%NGS(a"T’) [g(@’%’\pk)] 2 n 2n nLai n nLo?
- T 2n—ILn2  2— 1Ly B 12
< 2 (]E¢§~Gs(a§) [g(q)’g’\pk)] - ]E¢§~Gs(a’;) [[ﬁ((b?,\l/k)]) 2nnLai 2nnLo?
< o + 5 + 2
According to AssumptionZ,IE(ka wy [L(PF, UF)] —inf; Egr Ky [L£(®F, WF)] < 2@, then:
6~GS(af) 0 F~GS(af) t
T—1 2
4G 2nqmLoy,  2nnLo?
k k ¥ n o
2 fz% [V g F¥ (0, 0H)||* < mt o e

O

Remark 2. The convergence term of BDPL consists of three parts. The first term is typical of
first-order optimization algorithms converging to non-convex functions. The second term is the
stochasticity due to random mini-batch gradients. The first term and second term can be combined

2BkG .
nLai :

whenn:ﬁandc:

4G 277nL03} 4 2nLawG
T E STl B
which can decrease as the number of iterations and mini-batch size increase [Reddi et al.| (2016);

and the third term is the stochasticity due to prompt sampling, which decreases with the number of
prompt samples.
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Remark 3. According to the definition of Gumbel- Softmax , there is randomness about u =
{u;};—, ~ Uniform(0,1,) in Vo F*(af, U*) ie. p* = GS(a”,u) in fact and ®* ~ p*, we can
further discuss the result in Lemma[3}

Ey ||Var F¥(af, )| / [Var F* (@, 09)||* 1ydu < || Vo F (o, 9%) |

Considering the randomness of u, we can still obtain the convergence of BDPL. In subsequent
analyzes of Fed-BDPL, we can obtain similar result for .

Corollary 3. Convergence rate of BDPL: Let = min {%, % } we can get the following con-

vergence rate for BDPL:
1 2 1
T S ||V FH (0, 05| < O(ﬁ) (30)
t=0
Proof. Convergence rate:
T-1 2
4G 1 2nlLo 1 2nLo? 1
Vo P uh)P = 28 L 2oy 1 a:o()
T Z [V t )H VT VT B VT & I? VT

A.4 CONVERGENCE ANALYSIS OF FEDERATED PROMPT TUNING

Definition in the Federated Black-box Discrete Prompt Learning:
Data slicing: The data slices in each client are defined as D¥ = {Dk }f ) = {Uk Yk }kK ,» Where

= {vF, } , denote the input sentence and Y* = {ym} , denote the label, k is the index of

the client, and m is the index of the sample, there are totally M [ samples in the dataset D¥. The
K

clients hold the sampling probability vector ¢ = {q[k] }le = {%}k:f K, is the number of

clients selected and Uj is the set of corresponding clients.
Average parameter o

k
* keU,
Qi,6) = K > o
keU,
Average loss:
Eq:‘fNGS(at) (bh Zq[] E@k GS( k) I:E((I)?,\I/k)]
Average gradient:
K
Ve, Fla, %) Z Va, FF (a, UF) (31)
k=1
K
Vi F(a, U%) def Z Vi F¥(a*, UF) (32)
* ky def 1 k k
Vo F*(@F, UF) = Z Var F¥(a*, UF) (33)
* keU,
* ky def 1 k k
Var (@ B) = = > Var (e, BY) (34)
¥ keU,

22
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Vo f* (e, 8" 2 L — " Va,ff(a". B (35)

kGUt
Average mini-batch stochastic variance-reduced policy gradient descent:
Qi (t41) = Q1) — 1" ﬁaff*(afa B")

Note that when ¢t # sF, although the above some definitions don’t exist in algorithm and experiment,
we can still calculate and analyze them. In order to facilitate the analysis of the iteration process, we
assume that they exist.

The following lemma shows that the local gradient is biased compared to the global gradient due
to the fact that the distribution of data on different clients may be different (heterogeneity), and the
bias of the gradient can be analyzed using the bias about & (Haddadpour & Mahdavi| (2019)).

Lemma 4. Bound bias between local and average o. Let o; ; > v > 0 fori = 1,...,n and
7 =1,..., N, nis the learning rate, let E represents E{q>kv"‘~as(ak)}f and ng, the bias between
t t/ S p=1 §

the local and the average o can be bounded:

T-1 K

*qu[k] EHO‘ 0~

t=0 k=1
202 202 1 M2 E2\ 1) < 2
<pp? |20 4 2% (4 1 HVF’C\I"“H
= =0 <B +I2>(+K*>+ T (+K*>; ot Flar, %)

Proof. Define:

te 2 |=|FE
Q; J(te) = K Z a
keUs,
Then, fort. +1 <t <t.+ E:
&y =iy — Y 0 Var fFaf, BY) (36)
@i (1) = - Z Zn Var (0, BY) (37)
keU p=tc

2

For the k-th client, let E represents E{@,T}Iﬂ and EBF, and we take [E for ’ Q; (1) — af(t)

2

]E az (t)—a (
2
t—1
=E ) - Z Zﬂ Var I, BY) —ai )+ > 0+ Va, fF(ak, BY)
kEU,,p te p=te
2
t—1
=E|| ) n-Varf*(af,B) - ZZndf’“aﬁ’;)
p=tc kEU,,p te
o) ! ’ i
<2 E|Y - Varffel,BY)| +E Z Zn Vo f*(af, BE)
p=tc * keU, p=tc
) t—1 2
Dok ||S " - Vo i ek BE) - Zn Var fFaf, B ||| +2 vakf (af, BE)
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+2E ZZ" Vi fF(al, BY) — ZZ” Vi f* (0, BY)

* k€U, p=t. * keU, p=t.
2
+2 Zznka (af, By)
* keU, p=t.
@) o || = i
= 9E Zn-va;cfk(a’;,B’;)—Zn-va;ch(a’;,\IJ’“ +2 Zn Ve F¥(al, UF)
p=tc p=tc
2
+2E —Zzn Vi I (f, B) ——Zzn Vi F*(af, UF)
keU, p=tc keU, p=tc
2
Z Zn Va ka a , Uk
keUpP te
2 1 2
{ “(ak, BY) ~ Var FE (@, 09| || 23 0 Vo Fr(ah, w5
p=tc
2 2
+2E Z Zn |Var /" (0, BE) = Vo F* (@, 05)] ||+ Z Zn Vo (o, UF)
* keU, p=t. * keU, p=t.
@ t—1 ) t—1 2
222 3B [ Var (B = Var FH e 09| 42|37 0 Var P (e, 0%)
p=tc p=tc
2
Z Z]EHV kfka Bk) ka(a’;,\I/k)H Z Zn Ve ka a , k)
K: keU,,p te * keU, p=t.
- . 9 t—1 9
©) 92 Z E Hvai;fk(a';,lil;) - Vag;Fk(a’;,\I'k)H 2Pt —t) Y Hva;;Fk(a’;,\Ilk)H
= p=te
2 27(t—t.)
k k ki k gk n Ic k
*ZZEHka ok, BE) - kF(ap,\If)H+ e ZZHVF o q/)H
keU, p=tc keU, p=tc
© < (202 2%
<) ﬁ* *ZZ o T ]2
p=tc keU, p=t.
2
o2t — 1) Z Hv F*a ,xp’f)H Z Z H Ve ¥ (0 \I'k)H
p=tc keU, p=tc
t—1 2
20 202 1
= 292 v Zal) (g
P8 (5 F) ()
t—1 2
Pt —t) | Y Hva;ch(aﬁ,\IJ H Z Z Hv (FF(ak, k) H
p=tc Up p=tec

where (1) use inequality [|a — b]|* < 2 ||al|* +2|b]*; @) use E ||z — E [2]||> = E ||z|* — ||E [2]||*;
(3) use the unbiasedness of stochastic gradient and variance-reduced policy gradient in Assumption
[[]and Lemmaﬂ]; (4) use the independence of mini-batch and prompt sampling in each client; (5) use

inequality | Zz a:? <z Z _, llaz||?; (6) use the bounded variance of stochastic gradient and
variance-reduced policy gradient in Assumption [I]and Lemmal[I]
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Then, we sum both sides with respect to k € U,,:

2
k
Qi (1) — QG () H
keU,

202 o2
<2’72Z< "’+ )(K*+1)+2n2(t—t (

We take the expectation of both sides about Ey,:

> E|
keU,

£) & & [ourtah v

keU, p=tc

(1) — af,(t)

2

K
= K. Z ¢* - E Hai,(t)

2% K 1 2
< 27722 <B,‘f = ) (Ko + 1)+ 202 — 1) (K + 1) g Hv ka(a’;,\I/k)H
k=

1 p=te

t—

where (l) is because we sample client set U, uniformly at random where client k is sampled with
probability ¢[*! for 1 < k < K with replacement, and we define Uy, ={k1,....kp, ..., kK. }, then

S e

keU,
\2_

K.
= B, [Hv Pl )
2
HV FH(ak, )‘

il
it

2
g™ . Hvaka(aﬁ’\I’k)H

t

K 1 2
) 2 [t )|
k=1

p=t.

t—1 2
20 202 1
2 P [e%
§277 §:<Bk+12 <1+K>+217 (t—t <
We take v = p — t., vy =t — 1 — t., and add iteration on both sides:

T-1 K
qu[k].ﬁ‘a

2
k
i(t) — @ (1) H

t=0 k=1
[ TFr E-1 K 2
S50 35 YIRS MR
q i,(sE+7) i, (sE+7)
s=0 =0 k=1
[T -1 5 2
20 202 1
2 P a
<> > Z(Blc+p> <1+K*)
s=0 =0 =0
155+ B—1 K 2
+ 20%(y +1) (H) >3 " |VarF @l ¥
s=0 ~=0 k=1v=0
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1 202 207 1
<(E+1)Th? | =2 +=2](1
(+)"<Bk+l2 (+K>
B 1 K E—1 )
+ 3 e <1+ = )Z gl . Hvaka(a’;Equk)H

—~
—

s=0 k=1 v=0
202 202 1 1) 2
<(E+1)Tn" <B,f + ;;) (1 + % ) + 27 E? (1 + K) > gt HVQ;EF’“(af,\IIk)H
* */ k=1 t=0
where ()use 0 <y < FEF—-land1+..4+ F = w
Finally multiply both sides simultaneously by %:
| T2 K )
k
72> " E‘“z(t)‘“ )
t=0 k=1
ol 202 1 W2 E> 1\ & —
< (B + 1) <B;f + I;‘) (1 + - ) + (1 +— ) > | Vo Frak, v
* */ k=1 t=0
(1) ol 202 1 22 B2\ 1) « ||&
S(E+1)2<B}f+]; (1+K>+ "T (1+K) > MV Fraf, v
* =0 k=1
o2 202 1 M2E2\ 1) =
= (B + 1) <B}f 4 (1+ = > + 2 (1+ = > HvakF(af,\pk)H
where (1) use Assumption O

Theorem Suppose Assumptionandhold, fort =0,1,...,7— 1, B=min{B',..., BX}
where B* is the local mini-batch size. «;; > v > Ofori = 1,..,nand j = 1,...,N, I is the
sampling times for prompt. 02 = SG N is the variance of the variance-reduced pohcy gradient,

o2 is the variance of the stochastic gradlent Egk ~gs(ar) [£(®*, ¥¥)] is L-smooth for a* and L =
nGN(‘rJrl)

, and 7 satisfies the following inequality:

AL+ \//\2L2 +8025 (14 74)

0<n<n = (38)

8L2E (1 4 KL)

Then, the Fed-BDPL’s full gradient V,, F(a;, U¥) satisfies the following inequality:

1= 2
1S 9t 90|
=0

4G, 2(E + 1)L**no? (1 + 7) + 2nLno? . 2(E + 1) L*?no%(1+ 4) + 2nLno?
- T B 12

Proof. According to Lemma [2}
Eg, . ~GS(@er) [L(Ptr1, V)] — Eg,Gs(ar) [L(Pt, V)]

L
< (VaEo,~cs(ay) [L(Pr, ©)] a1 —ay) + 3 lloees1 — o]

< z (Vo Flan ¥9), Vs ah 80)) + A O Gk )

]

Eigrryr EgrEy, {Eo,. ~cs@e1) [L(Pi41, V)] — Ea,as(ar) [L(Pr, V)] }

We take the expectations about {@k’r}izl, BF and U; on both sides respectively:

26




Under review as a conference paper at ICLR 2025

n
<> {E(geryr_EmEr, [<VaiF(at,\I!k),—n~Vaff*(af,lﬁf)ﬂ

i=1

n

a)

L’I72 - *
+Z TE{wa-}ﬁ:lEBQEUt |:Hvaff (e}, BY)
i=1

]

3
2 2 O Fo w4 [war ik v ] 42

where (1) use inequality 2(a, b) = ||a||* + [|b]|* — ||a

use L-smooth in Lemma[2]
For b):

L772 - * k k
LB ey EntBu, ||Var s @k, B)

_ LWQ - * k k
= Ev, 7E{<1>k«r}17 Esf va’?f (af, By)

~[[Var Pt )|+

~ ||V Pk, w5

- ' Vi Flaf, xp’f)‘ 1

b)

[K Zq[k Vs F* (@, W)

~—

‘ 2

k=1

|

i

;

-n- IEUt,E{@k‘T}{:IEBf Z Va fk a \I’k) >
k‘GUf
—n-Ey, Z Vs F¥(a, U) >
kEUt

K
Ve, Floy, ¥F) =Y " ¢" . v, . F* (", o%)
[K] . (v Fk at7 \I/k) Va]st(ak, \I/k))

2 2
’ n Zq[kl : vaF’“(at, TF) — Vo F¥ (a, \I/’“)H

Z vdiE‘thGS(at)[ﬂ(q)hwfn)] T Ak

Yk ek

k=1
2

Z vafEéfNGS(af) [£(®f7 1/’51)]

1

Yk ek

K
Zq[k]Lz"a
k=1

k
i,(t) — O (1)

— b]|?; (2) use the convexity of £5 norm; (3)

@a Ln? v * 2
)EUt{ Nl E{cpk,}r EBk |:HV kf at, ) E{cbk I ]EBk |: a?f (af,Bf)”’ ]}

~ 2
+Ey, {;7 |Baryr By [Var £ (e, BD)]| }
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@ L N . 2
2 5y, { A B ey By [Vt 0k B - Tk w9 ]}
Ln? 2
4B, | [t )]

(3) Ln?
< TR,

2
Vi (o, 00)|

+ EUt {Ln2]E{q>k7}£1]EBf [“@aff*(a?’ Bf) - E{ékwT}izlﬁa?f*(afv Bf)

ik

+ Ey, {LnQ]E (arry_ Epp [H]E{@,T}iﬁ,,? Fr(@f, BY) = Eqgroyr_ EppVar f*(af, B)

1}

2 2

(4) Ln? 2
iU EUt vafF*(a?7\Pk)H +L772 'E’Ut |:IQ:| +L77 EUt

B

L 2 K 2 L 2 2 L 20.2
=7”Zq““]'HvakF’“(af7\P’“)H s 2L

I? B
2
© LA = Lo Lo’
TS g Vg el wh)|| 4 Ty T (39)
k=1

where (1) use E ||z — E [z]||* = E ||z|* — ||E [2]||*; (2) use the unbiasedness of stochastic gradient
and variance-reduced policy gradient in Assumption|l|and Lemma (3) use [la +b]]* < 2|ja]® +

%: (4) use the bounded variance of stochastic gradient and variance-reduced policy gradient in
Assumption[T]and Lemmal[T} (5) use Assumption[3]

Combining a) and b):
=
T {Ea,, ~cs@e1) [L( P41, 9)] — Ea,gs(ar) [L(Pr, V)] }
t=0
1T 1 n K 2
ST {— {HVmF a;, ¥ H +HV K Fag, U) H } Zq[k]ﬁ"ai,(w —aﬁu)H ]}
t=0 i=1 k=
T-1 n K 2 2 2
1 L*A (%] k(k ik Loy | Loy,
t=0 i=1 k=1
O 1 -« ky[12 n ALT} B L2E k
t=0
N (E+1)L*Pnoy,(1 + 7=) + nLn’o, N (E+ 1)L2r]3no (1 + ) + nLr]Qg2
B 12

where (1) use Lemmafd]
Then,we can get:

1 T-1

LY [VaF(an v

< Eay~cs(ao) [£(P0; V)] — Egpncs(ar) [L(PT, ¥)]
< T

1 1 2
+ [—1 + ALy + 20°L*E(1 + K*)} 7 ; | Var F ey, TF)||

2(E +1)L*n*no? (1 + =) + 2nLno? . 2(E +1)L*n*no2(1+ =) + 2nLno?
B I?

+
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Based on Assumption 2} Eg, ~as(ag) [£(Po, V)] — inf; Eg, ~gs(a,) [£(Pt, ¥)] < 2G and:

1
—1+ ALy +20°L*E(1 + F) <0

*

AL+ \//\2L2 +812 (14 -

)

0<n<n' =
SL2E (1+ - )
Finally:
1= 2
k
T Z ||vaF(at7\Ij )H
t=0
4G 2E+1)L*Pnol(1+ 3=) + 2nlnoy,  2(E+ 1) L*n*nol(1+ =) + 2nlno?
< —=+ * + .
nT B I?
O
Corollary[I} Convergence rate and complexity
1) Convergence rate: Let 7 = min {77*, ﬁ, %} Under this condition, the following holds:
T—1
> IVaFlen W) = 0(—) (40)
T rar o ty \/T
2) Complexity: To guarantee an e-solution, such that % Z;T:_Ol HVQF(at, k) H2 < €2, the follow-
ing condition must hold:
1
T.=0 <4> 41)
€
Proof. From condition of 7:
AL+ \//\2L2 +8L2F (1+ )
0<n<n'=

SL2E (1+ - )
We let 77 = min {n*, %, %} and the following holds:

1= 2
72 [VaF(aw v
t=0

1 1 (2nLo}  2nLo?
go(ﬁ)(4a)+0(ﬁ)< 5o+ 0 )

o <1> 2(E +1)Lno3 (14 ) N 2(E +1)Lno2 (1 + )
VT B 12
1
-o(7)
In addition, we considering the iterative complexity, to get a e-solution:
= i )
7 tz_; | VaF (o, ¥%)||" < €

‘We need to choose:

4G 2E+1)Inod(1+ 1) +2nLo?  2(E+1)Ino2(1+ 7-)+2nLo2]’
-+ +

€2 Be2 I2¢€2

T, =
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O

Corollary2] The impact of K, (FedOne): In the FL framework, T. K, represents the total number
of queries made to the cloud-based LLM service to achieve an e-solution, whose quantity is directly
proportional to the cost incurred for utilizing the LLM. The following condition holds:

T.K, x K, (42)
Therefore, T. K, is a function of K, that increase steadily for K, = 1,2,..., K, indicating that the
optimal K, for query efficiency is K, = 1.

Proof. According to Corollaryl when 7 = min { , \F’ L} to get a e-solution:

% Z |VaF(ar, U%)|| < € 43)
t=0

‘We need to choose:

2
G, 2(E 4 1)Lnol (1 + ) + 2nLo? . 2(E +1)Lno2(1+ ) + 2nLa§]

T, =
2 Be2 I2¢2

The T, K, proportional to the query time satisfies the following equality:

T.K,
4G 2(E+1)Lno?(1+ 7) +2nLo?  2(E+1)Lno%(1+ #) + 2nLo?
Tl e + Be2 * I12¢€2 *
2
4G 2(E+2)Lnol  2(E +2)Lno? 2(E +1)Lno3  2(E +1)Lno? 1
€2 Be? I2¢2 Be? I12¢2 VK.

Then, T, K, is a function of K, that first decreases and then increases and that the optimal K, for
query efficiency exists:

2(E+1)Lno?, n 2(E+1)Lno?

Kopt _ Be2 1262 1
* Pre 2(E+2)Lno?, 2(E+2)Lno?
= Be? + I2¢2

Finally, consider only the effect of K, and K, > 1, we can get:
T.K, x K,

Therefore, T, K, is a function of K, that increase steadily for K, = 1,2, ..., K, indicating that the
optimal K, for query efficiency is K, = 1. O

Remark 4. We carefully analyze the optimal K, by balancing convergence complexity and query
time, aiming to achieve the fastest convergence with the fewest queries. Specifically, we fix the
convergence accuracy, denoted as €, and determine the number of iterations, T, required to achieve
this accuracy. We then analyze the total number of queries, given by T, K, o K,. This analysis
shows that increasing K, for K, = 1,2,..., K, the number of activated clients can accelerate
convergence by leveraging more data; however, it also increases query overhead, leading to higher
communication and computational costs. We rigorously demonstrate that the number of queries
required for Fed-BDPL to achieve an e-solution is proportional to K. This result emphasizes that
optimal query efficiency is achieved when only a single client (K, = 1) is activated per round.
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B EXPERIMENT DETAILS

B.1 GLUE DATASET DETAILS

Below is the table for the detail of the dataset we use, and their associated tasks, metrics, and data

domains.
Dataset |L| |Train| |Dev| |Test| Type Metrics Domain
MNLI 3 393K 98K 98K NLI acc. fiction, reports
QQP 2 364K 40K 391K  paraphrase F1 Quora
SST-2 2 6.7K 872 1.8K sentiment acc. movie reviews
MRPC 2 3.7K 408 1.7K  paraphrase F1 news
CoLA 2 8.6K 1K 1K acceptability Matthews corr.  books, articles
QNLI 2 105K 55K 55K NLI acc. Wikipedia
RTE 2 2.5K 277 3K NLI acc. news, Wikipedia

Table 6: The statistics and metrics of seven datasets in GLUE benchmark, |L|: number of classes
for classification tasks.
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